$\mathrm{C} 1-\mathrm{Li} 2^{\prime}$ is $51.8(3)^{\circ}$ bent out of the plane of the cyclopropane ring ($\mathrm{Li}^{2}{ }^{\prime}$ lies 168.5 (8) pm below this plane). This bonding situation differs characteristically from that of the α-cyanobenzyllithium species 4: In 4 the anionic α - C atom is planar and has no carbon-lithium bond, and the $\mathrm{C}-\mathrm{C}-\mathrm{N}$ unit is linear. The tetrahedral configuration of Cl in $[3 \cdot \mathrm{THF}]_{\infty}$ together with the higher acidity of cyclopropyl as compared to isopropyl nitrile ("cyclopropyl effect") ${ }^{2.4}$ thus clearly demonstrates that the (inductive) field effect plays a major role in the stabilization of a negative charge by a nitrile group. ${ }^{6 \mathrm{~b}}$ In agreement the bond lengths $\mathrm{Cl}-\mathrm{C} 6$ (140.0 (0.7) pm) and $\mathrm{C} 6-\mathrm{N} 1$ (117.8 (0.7) pm) are not very different from those in cyclopropyl nitriles (e.g., 1,1,2,2 tetracyanocyclopropane C-C $144.2 \mathrm{pm} ; \mathrm{C}-\mathrm{N} 115.0 \mathrm{pm}$). ${ }^{7}$ In a keteniminate type structure resulting from delocalization of the negative charge one would expect a shorter $\mathrm{C}-\mathrm{C}$ and a longer $\mathrm{C}-\mathrm{N}$ bond as this is the case in the ketenimine $N-p$-bromophenyl-2,2-diphenylvinylideneamine: C-C 133.0 pm ; C-N $124.0 \mathrm{pm} .^{8}$ The bond lengths within the three-membered ring are also of interest: The distal C2-C3 bond (147.3 (0.7) pm) is shorter than the two vicinal bonds ($\mathrm{C} 1-\mathrm{C} 2150.0$ (0.7) pm; C1-C3 152.2 (0.7) pm). Such a pattern of bond length asymmetry has been predicted for acceptor-substituted cyclopropanes if there is an interaction between the occupied cyclopropane $3 e^{\prime}$ and an unoccupied acceptor π orbital. ${ }^{9,10}$ It is generally observed in cyano-substituted cyclopropanes. ${ }^{7}$ Since this is also observed in the cyanocyclopropyl
(7) Allen, F. H. Acta Crystallogr. 1980, B36, 81-96.
(8) Naqvi, R. R.; Wheatley, P. J. J. Chem. Soc. A 1970, 2053-2058
(9) (a) Hoffmann, R. Tetrahedron Lett. 1970, 2907-2909. (b) Hoffmann, R.; Stohrer, W. D. J. Am. Chem. Soc. 1971, 93, 6941-6948. (c) Hoffmann, R.; Fujimoto, H.; Swenson, J. R.; Wan, C.-C. J. Am. Chem. Soc. 1973, 95 , 7644-7652. See, also: Clark, T.; Spitznagel, G. W.; Klose, R.; Schleyer, P. v. R. J. Am. Chem. Soc. 1984, 106, 4412.
(10) Günther, H. Tetrahedron Lett. 1970, 5173-5177.
anion $[3 . \mathrm{THF}]_{\infty}$, the nitrile group not only interacts with the "anionic" but also with the $3 \mathrm{e}^{\prime}$ orbital. ${ }^{11}$

The tetrahedral configuration of the anionic Cl in the solidstate structure of $[3 \cdot \mathrm{THF}]_{\infty}$ thus nicely confirms the results of H/D exchange experiments with cyclopropylnitriles in solution. ${ }^{2,4}$ It is also in agreement with calculations which predicted a tetrahedral anionic carbon atom in the a-cyanocyclopropyl anion. ${ }^{12}$ Furthermore, MNDO calculations indicated that the most stable unsolvated dimer of $\mathrm{LiCH}_{2} \mathrm{CN}$ prefers an eight-membered ring structure, while solvation favors the alternative $\mathrm{Li}-\mathrm{N}-\mathrm{Li}-\mathrm{N}$ four-membered ring. ${ }^{13}$ Because of the special features of an α-cyanocyclopropyl anion as outlined above, both of these structural units are verified in $[3 \cdot \mathrm{THF}]_{\infty}$.

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the BASF AG for support.

Supplementary Material Available: Tables of atomic positional and isotropic equivalent thermal parameters, anisotropic thermal parameters, bond distances, bond angles, torsion angles, interatomic contacts greater than 200 and less than 300 pm , and weighted least-squares planes and lines for $[3 \cdot \mathrm{THF}]_{\infty}$ (10 pages). Ordering information is given on any current masthead page.
(11) It is interesting to mention that in agreement with the bond length asymmetry in $[3 . \mathrm{THF}]_{\infty}$ in the rearrangement of the 9 -cyano-cis-bicyclo-[6.1.0]nona-2,4,6-trien-9-yl anion a vicinal and not the distal $\mathrm{C}-\mathrm{C}$ bond is broken; Boche, G.; Martens, D. Chem. Ber. 1979, 112, 175-195
(12) (a) Wagner, H.-U.; Boche, G. Z. Naturforsch. 1982, 37B, 1339-1343. (b) Lien, M. H.; Hopkinson, A. C.; McKinney, M. A. J. Mol. Slruct. 1983, 105, 37. (c) Hopkinson, A. C.; McKinney, M. A.; Lien, M. H. J. Comput. Chem. 1983, 4, 513.
(13) Kaneti, J.; Schleyer, P. v. R.; Clark, T.; Kos, A. J.; Spitznagel, G. W.; Andrade, J. G.; Moffat, J. B. J. Am. Chem. Soc. 1986, 108, 1481-1492.

Additions and Corrections

Acromelic Acids A and B. Potent Neuroexcitatory Amino Acids

 Isolated from Citocybe acromelalga [J. Am. Chem. Soc. 1988, 110, 4807-4815]. Katsuhiro Konno, Kimiko Hashimoto, Yasufumi Ohfume, Haruhisa Shirahama,* and Takeshi MatsumotoPage 4807: The following should be added to ref 3. Syntheses of acromelic acid A were reported from other laboratories: Takano, S.; Iwabuchi, Y.; Ogasawara, K. J. Am. Chem. Soc. 1987, 109, 5523-5524. Baldwin, J. E.; Li, Chun-Sing J. Chem. Soc., Chem. Commun. 1988, 261-263.

Effect of Long-Distance Electron Transfer on Chemiluminescence

 Efficiencies [J. Am. Chem. Soc. 1988, 110, 2764-2772]. Robert D. Mussell and Daniel G. Nocera*Page 2767: The $E_{1 / 2}$ values for the reduction potential of acceptors (A) listed in Table I are given vs the ferrocenium/ ferrocene reference couple and not as written, vs SCE. To relate these potentials vs a SCE reference, a value of 0.31 V must be added to the listed potentials.
Page 2769: Equation 14 should read $H_{A B}{ }^{2}=\left(H_{A B}\right)^{0} \exp [-\beta(r$ - δ)].

Synthesis and Reactivity of Binuclear Tropocoronand and Related Organocopper(I) Complexes. Catalytic Enantioselective Conjugate Addition of Grignard Reagents to 2-Cyclohexen-1-one [J. Am. Chem. Soc. 1988, 110, 3175]. Gilberto M. Villacorta, Ch. Pulla Rao, and Stephen J. Lippard*

In writing this paper we were unaware of the previous synthesis of an optical isomer of the ligand that we call H(CHIRAMT) (Brunner, H.; Knott, A.; Benn, R.; Rufinska, A. J. Organomet. Chem. 1985, 295, 211). We thank Dr. H. Brunner for drawing this prior work to our attention.

A Carbon-Carbon Bond Cleavage Reaction of Carbon Suboxide at a Metal Center. Synthesis and Structural Characterization of $\mathbf{W C l}_{2}(\mathbf{C O})\left(\mathbf{P M e P h}_{2}\right)_{2}\left[\mathbf{C}, \mathbf{C}^{\prime}: \eta^{2}-\mathbf{C}(\mathbf{O}) \mathbf{C P M e P h}_{2}\right][\mathrm{J} . \mathrm{Am}$. Chem. Soc. 1988, 110, 4855]. Adam K. List, Gregory L. Hillhouse,* and Arnold L. Rheingold*

Compound $\mathbf{3}$ is properly formulated as the phosphinocarbyne complex $\mathrm{WCl}_{2}(\mathrm{CO})\left(\mathrm{CPMePh}_{2}\right)\left(\mathrm{PMePh}_{2}\right)_{2}$, and not WCl_{2-} (CO) $\left(\mathrm{PMePh}_{2}\right)_{3}$ as was reported. This was confirmed by an X -ray structural determination on a PPh_{3} derivative, $\mathrm{WCl}_{2}(\mathrm{CO})$ $\left(\mathrm{CPH}_{3}\right)\left(\mathrm{PMePh}_{2}\right)_{2}$, details of which will be published elsewhere.

